Hall Ticket Number:	
	Code No.: 7215 M

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. I Year (EEE) II-Semester (Make Up) Examinations, August-2016 (Power Systems & Power Electronics)

Modern Control Theory

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. What is a state-transition matrix?
- 2. Explain the SISO with neat sketch.
- 3. What are singular points?
- 4. What is describing function?
- 5. Define the stability in the sense of Lyapunov.
- 6. Discuss the variable gradient method.
- 7. Define the principle of optimality.
- 8. List the different types of optimal control problems.
- 9. What is an adaptive control?
- 10. List the types of adaptive control.

Part-B (
$$5 \times 10 = 50$$
 Marks)
(All bits carry equal marks)

- 11. a) Explain the concepts of state, state variables, state model and state diagram with suitable examples.
 - b) State the duality between controllability and observability.
- 12. a) What are the various types of non-linearities that occur in control systems?
 - b) Describe the measurement of time on phase plane trajectories.
- 13. a) Consider the 2nd order system described by

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 5 & 8 \\ 10 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

The equilibrium state is the origin. Determine the stability of the system using Lyapunov's method.

- b) Explain Lyapunov stability and instability with their details.
- 14. a) Find the optimal control value using Hamiltonian method

$$J = \frac{1}{2} \int_0^{\pi/4} (x_1^2 + \dot{x_2}^2 + \dot{x_1} \, \dot{x_2}) dt$$

The Boundary Conditions are $x_1(0)=0$, $x_1(\pi/4)=1$, $x_2(0)=0$, $x_2(\pi/4)=-1$.

- b) What is the procedure followed for solving optimal control problem using Hamilton-Jacobi method?
- 15. a) Write the details of the modern reference adaptive control.
 - b) A nonlinear system governed by the equations given $\dot{x}_1 = -x_1 + 2x_2^1x_2$, $\dot{x}_2 = -x_2$ Given data $V = x_1^2 + x_2^2$ and prove that $\frac{DV}{dt}$ is negative definite.
- 16. a) Explain the concept of pole placement by state feedback.
 - b) Compare the isocline and delta methods with their details.
- 17. Write short notes on any two of the following:
 - a) Asymptotic Stability
 - b) Pontryagins minimum principle.
 - c) Lyapunov stability criterion.
